Category: Hispanic-White IQ Gap (page 1 of 2)

New MQ paper

Kirkegaard, E. O. W. & Fuerst, J. (2016). Inequality in the United States: Ethnicity, Racial Admixture and Environmental Causes. Mankind Quarterly 56(4).

Previously, we looked at the association between overall state-level biogeographic ancestry (BGA) and overall state-level outcomes. It was found that European BGA relative to African and Amerindian BGA was associated with better outcomes. In this paper, the analysis is extended by looking at the state-level ancestry-outcome associations individually for black and Hispanic self-identified race-ethnicity (SIRE) groups. General socioeconomic factor (S) scores were calculated for US states by SIRE groups based on three indicators. The S factor loadings were generally stable across subgroup analyses and the factor scores were stable across factor analytic extraction methods (for the latter, almost all r’s ≈ 1). For Whites, Blacks and Hispanics, there were strong correlations between cognitive ability scores and S factor scores across states (r = .55 to .78; N = 28-50). This pattern also held when all data were analyzed together (r = .86, N = 115). Furthermore, the size of the Hispanic-White and Black-White S and cognitive ability gaps strongly correlated across states (r = .62 to .69; N = 36-37). Lastly, parasite prevalence did not plausibly explain SIRE gaps in cognitive ability because gaps were smaller in more parasite-rich states (combined analysis r = -.17, N = 91). We found that climatic and geospatial variables did not correlate strongly with cognitive ability and S scores when scores were decomposed by SIRE group, but did so at the total state level, even after statistically controlling for SIRE composition.

Genetic and Environmental Determinants of IQ in Black, White, and Hispanic Americans: A Meta-analysis and New Analysis

The PDF and data file are available at Open Behavioral Genetics. You can also read the article below the cut.

Published:  September 15, 2014

John Fuerst [1]

Dalliard

Abstract:  The authors conducted a meta-analysis of interactions between behavioral genetic variance components (ACE) and race/ethnicity for cognitive ability. The differences between the variance components for Black and White Americans were small, despite the large average test score differences. More substantial differences were found between Hispanics and non-Hispanic Whites, though results were based on only two studies. A biometric re-analysis of the CNLSY survey was then conducted and new meta-analytic results were provided. Results were discussed in light of the bio-ecological model which proposes that when the scores of subgroups are environmentally depressed, heritabilities will be likewise.

Keywords:  Race, Ethnicity, Heritability, IQ, Environment, ACE model, bio-ecological model

Continue reading

Ethnic/Race Differences in Aptitude by Generation in the United States: An Exploratory Meta-analysis

An early version of this paper was posted on June 25th. The paper has since been extensively edited and corrected and, subsequently, published at Open Differential Psychology on July 25/26th, 2014. The paper and data files can be found here at the Open Differential Psychology site.

PDF.

Abstract

Cognitive ability differences between racial/ethnic groups are of interest to social scientists and policy makers. In many discussions of group differences, racial/ethnic groups are treated as monolithic wholes. However, subpopulations within these broad categories need not perform as the racial/ethnic groups do on average. Such subpopulation differences potentially have theoretical import when it comes to causal explanations of racial/ethnic differentials. As no meta-analysis has previously been conducted on the topic, we investigated the magnitude of racial/ethnic differences by migrant generations (first, second, and third+). We conducted an exploratory meta-analysis using 18 samples for which we were able to decompose scores by sociologically defined race/ethnicity and immigrant generation. For Blacks and Whites of the same generation, the first, second, and third+ generation B/W d-values were 0.79, 0.79, and 1.00. For Hispanics and Whites of the same generation, the first, second, and third+ generation H/W d-values were 0.76, 0.67, and 0.57. For Asians and Whites of the same generation, the first, second, and third+ generation d-values were -0.08, -0.21, and 0.00. Relative to third+ generation Whites, the average d-values were 0.99, 0.84, and 1.00 for first, second, and third+ generation Black individuals, 1.04, 0.71, and 0.57 for first, second, and third+ generation Hispanic individuals, 0.16, -0.18, and -0.01 for first, second, and third+ generation Asian individuals, and 0.24 and 0.04 for first and second generation Whites.

Keywords: Immigrants, group differences, race, ethnicity, aptitude, National IQ

Continue reading

Is IQ Heritability Moderated by Race? An Analysis of the CNLSY Sample

The strong heritability of IQ is well established for white populations in America, with dozens of studies confirming the basic findings. When it comes to heritability in non-whites, the handful of studies that exist (see Jensen 1998, p. 446ff.; Rowe et al. 1999; Guo & Stearns 2002; cf. John’s recent post) do not allow us to conclude that heritability is lower (or higher) in non-white Americans than it is among white Americans, but there is a sore need for more research.

To diminish this uncertainty, we compared the heritability of several different cognitive abilities in whites, blacks, and Hispanics in the CNLSY sample. The sample, which consists of the children of the mothers who are part of the NLSY79 study, includes the results of various ability tests administered between ages 3 and 13. Continue reading

HVGIQ: Puerto Rico

The Commonwealth of Puerto Rico is a Spanish-speaking territory of the United States. Puerto Ricans are United States citizens—they can freely migrate between the island and the states, join the military, or even run for president. But they can’t vote for president, because the territory is not a U.S. state. In three referendums from 1967 to 1998, Puerto Rican voters rejected both political independence and U.S. statehood. However, in November 2012 a solid majority (61.3%) voted in favor of statehood. This kind of political nudging could quite possibly result in Puerto Rico becoming the 51st U.S. state … but only Congress and the president have authority over the matter, and analysts agree that approval is unlikely. This particular referendum also left off the option traditionally most favored by Puerto Ricans: continued commonwealth status. Many islanders appear to feel that statehood offers few additional benefits over citizenship; a majority of Puerto Ricans already live on the U.S. mainland (5 million vs. 3.7 million).

From the earliest days of intelligence testing, social scientists have taken a special interest in U.S. Hispanics. Proportionate to their numbers, it’s possible that more tests have been given to Hispanics than to blacks. But this special attention has also lacked focus. African-American test results have been subject to meticulous cataloging, synthesis and analysis (Shuey, 1966; Jensen, 1998; Jencks & Phillips, 1998) leading to somewhat of a consensus on the size and shape of the black-white cognitive performance gap. Yet there has not been a similar effort to process the disparate and voluminous literature on the abilities of U.S. Hispanics. Therefore there is less knowledge and consensus about the historical and contemporary test performance of Hispanic minorities.

Most of the U.S. Hispanic population is Mexican American (63%). Puerto Ricans are the second largest Hispanic minority (9.2% … or 15.3% including the Commonwealth). This post represents the first effort to comprehensively summarize the abilities of one of these two important American minority groups. Here I describe and analyze the results from over 70 studies that have measured the abilities of Puerto Ricans.

Continue reading

ACE Analysis of the NLSY79 AFQT by Race/Ethnicity

Much has been written about social class differences in the heritability of cognitive ability, little about racial and ethnic differences. I will leave a review of the issue, a discussion of our meta-analytic results, and a report of our technically complex CNLSY ACE x race/ethnicity analysis to my more loquacious (and apt) colleagues. Here I present results based on the (effectively) small NLSY79 kinship sample.
Continue reading

Racial Differences on Digit Span Tests

In digit span tests, the respondents are asked to repeat a string of digits. There are two variants of the test, forward digit span (FDS) and backward digit span (BDS). In FDS, the digits are repeated in the order of their presentation, while in BDS they must be repeated in the reverse order. The largest number of digits that a person can repeat without error is his or her forward or backward digit span.

It is well-established that the black-white gap is substantially larger on BDS than FSD (see references in The g Factor by Jensen, p. 405, Note 22; see also my recent analysis of the DAS-II). However, replication is always good, so I analyzed black-white differences in the CNLSY sample, which contains FDS and BDS scores for relatively large samples of black and white children. Additionally, I compared the digit span performance of Hispanic American children to that of blacks and whites. Continue reading

Spearman's Hypothesis and Racial Differences on the DAS-II

According to Spearman’s hypothesis, the magnitude of the black-white gap on a given cognitive ability test is primarily determined by the test’s g loading. Tests that are better measures of g are associated with larger gaps.

The Differential Ability Scales, Second Edition, or the DAS-II, is an IQ test for assessing children and adolescents. It comprises a total of 21 subtests, although in the present analysis only 13 subtests are used, because not all tests are administered across age groups. I will use the method of correlated vectors (MCV) to test whether g loadings are correlated with mean racial differences on the DAS-II subtests. In addition to the black-white gap, I will also investigate if the test performance of Asians and Hispanics is predicted by g loadings. Continue reading

An Analysis of the NLSY79 and NLSY97 Full Sibling Correlations by Race

In his classic work, Educability and Group Differences, Arthur Jensen presented a number of lines of evidence in defense of his thesis that the Negro-White difference in psychometric intelligence had a congenital component. On the basis of full sibling correlations and relations, Jensen offered the following arguments:

(a1) The full sibling correlations for Blacks and Whites are comparable; (a2) unshared environmental hypotheses, such as nutritional ones, would predict otherwise (pg. 338-339).

(b1) The full sibling correlations for Blacks and Whites are comparable; (b2) a shared environmental hypothesis of group differences would predict otherwise, assuming that the within population heritablities were the same (pg. 108-109).

(c1) The average absolute difference between full siblings is no greater for Blacks than for Whites; (c2) unshared environmental hypotheses, such as nutritional ones, would predict otherwise (pg. 338-339).

(d1) When matching Blacks and Whites on IQ, one sees differential sibling regression, a differential regression which does not decrease with increasing IQ; (d2) an environmental hypothesis of group differences would not predict this (pg. 118-119). Continue reading

Spearman’s hypothesis and the NLSY97-ASVAB, part 2

Skin color is a (very imperfect) proxy for white ancestry in African Americans and Hispanics. If racial and ethnic gaps in intelligence have a genetic component, we would expect lighter skinned individuals to have higher IQs, on the average. Further, because g is the main heritable component of intelligence, tests with higher g loadings should show larger associations with skin color.

We investigated these hypotheses in the NLSY97 sample. It contains interviewer reports on facial skin tone of the respondents as measured on a scale of 1 (lightest) to 10 (darkest). The interviewers used a “color card” as a reference.

All the correlations below are significant at conventional levels unless otherwise indicated. Because of the way skin color is coded in this analysis, negative correlations between skin color and test performance are expected if the hereditarian hypothesis is correct.

I found that among blacks, the correlation between g scores and skin color (darkness) was -0.133 (N=1856), whereas T scores were unrelated to skin color (r=-0.012, ns; N=1856). Among Hispanics, g scores correlated with skin darkness at -0.123 (N=1051), while T scores were unrelated to skin color (r=0.062, ns; N=1051). Therefore the results are about as expected. (See the previous post for information about the T factor.)

Applying again the method of correlated vectors (MCV), we found that vectors of skin color-test gap correlations were strongly and significantly associated with g loadings within populations. In other words, lighter-skinned individuals tended to outscore darker-skinned coracials/coethnics more on tests with higher g loadings. Among blacks, the correlations were r=-0.84 and rho=-0.75, and among Hispanics r=-0.60 and rho=-0.59 (correcting for unreliability would make all these correlations somewhat stronger).

The MCV results could be interpreted in terms of genetic effects: tests with higher g loadings are more heritable, and skin color is a proxy for white ancestry and thus presumably better “IQ genes”. But why would these within-population color analyses produce the expected correlations between g loadings and race markers (i.e., skin tone) when the between-population MCV analysis, presented in the previous post, did not? It appears that on the ASVAB g is the major source of racial/ethnic differences, but the T factor also contributes to the gaps. (Cohen’s d’s on the g scale were B-W 1.124, B-H 0.368, and H-W 0.759, while on the T scale they were B-W 0.561, B-H 0.261, and H-W 0.306.) However, T is not associated with skin color within populations, which suggests that its heritability is low and it is linked to race and ethnicity for non-genetic reasons. This would explain why the MCV results from within- and between-population analyses differ.

In the NLSY97, higher g is associated with lighter skin among blacks and Hispanics. This is in accord with hereditarian theory, but nurturists would of course argue that these correlations are due to colorism. These competing hypotheses could be tested by comparing skin color-IQ associations within and between families, as was done here.

Older posts

© 2017

Theme by Anders NorenUp ↑