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Calculating Expected Phenotypic Differences. 

1. Formulas

The formal relation between the combined or total within and between group heritability, heritability between groups, and genetic and phenotypic differences is given by Defries (1972a), McClearn and Defries (1973), Loehlin, Lindzey, & Spuhler (1975), Cheverud (1985), Jensen (1998):

                                                                                                                              (1)                                                                                                                                    

where   is the between group heritability,  is the combined or total  heritability, r is the genetic intraclass correlation, and t is the phenotypic intraclass correlation, which is equivalent to the square of the point biserial correlation (i.e., rpbs2).  This formula can be expressed in terms of within groups heritability,  . In this case:

                                                                                                                  (2)                                                                                                                                      
                                                                                                                                           
where is the average of the heritabilities within both groups. Equations (1) & (2) are simplified, but can be expanded to include gene-environment covariance (COVGE) (Defries, 1972b). In this case, the between group heritability is not but is equal to:

+  hG * eG * rAGEG

where hG and eG are the square root of the between groups heritability and between group environmentality, respectively, and rAGEG is the gene-environment correlation between groups. Thus, 
in the case of positive COVGE, equations (1) and (2) will underestimate genetic differences between groups (McClearn and Defries, 1973). This formula can be further expanded to include dominance (e.g., Wright, 1952). See the exchange between Defries and Jensen (Jensen, 1972; also: Jensen, 1998) for when narrow or broad-sense within groups heritability is more appropriate. Here we will work with the simplified equation.

The intraclass correlations (r and t) can be interpreted in terms of one-way analysis of variance (Loehlin, Lindzey, & Spuhler, 1975), where:

                                                                                                                    (3)                                                                                                

where MSb represents the mean square between groups and MSw represents the mean square within groups. ICCs are equivalent to [image: ], which can be converted into Cohen’s d with the following equation:

   or, equivalently,                                                                             (4)                                                                                                                             
where Cohen’s d is:

                                                                                                                                   (5)                                                                                                                                        

and M1 and M2 are the means for group 1 and group 2, respectively and SDpooled is the pooled standard deviation. Alternatively, [image: ]can be converted into a point-biserial correlation, and this can be converted into Cohen’s d with the following equation: 

rpbs =     or, equivalently,  d =                                                                               (6)                                                                                   

For diploid populations, r, the genetic intraclass correlation, in equation (1) and (2), is:

r = 2Fst / (1+ FIT)                                                                                                                            (7)                                                                                                                      

where Fst is the fixation index, or the between group variance in allele frequencies, and FIT  is the overall level of inbreeding in the total population (Hamilton, 1971; Cheverud, 1985; Whitlock, 2004). 

Contrary to what is often thought, the upper bounds of Fst is typically  < 1 (Hedrick, 2005;
Alcala & Rosenberg, 2017; Alcala & Rosenberg, 2019). Fst is mathematically constrained by heterozygosity and the frequency M of the most frequent allele. (For typical Humans SNPs, the upper bounds is around .70; e.g., Xu, Huang, Qian, & Jin, 2008; Alcala & Rosenberg, 2017).Thus, Fst is not on the variance scale of 0 to 1. In light of this, Hedrick (2005) proposed a standardized metric; similarly, Alcala & Rosenberg (2017) proposed the ratio Fst/Fst_max, which ranges from 0 to 1. 

To correct for the mathematical constraints and place Fst on a variance metric, we can follow (Alcala & Rosenberg, 2017) and create corrected value, Fst _c:

Fst _c = Fst  / Fst _max                                                                                                                      (8)                                                                                                                                  

The corresponding corrected genetic intraclass correlation, rc , is:

rc = 2 Fst_c/ (1+ FIT)                                                                                                                        (9)                                                                                                                                                                                                                                             

There are other concerns with common Fst estimators, given assumptions about population structure (Ochoa & Storey, 2021). These assumptions can lead to underestimations of the coefficient of relatedness, which r represents (DeFries, 1972a), in context to admixture (Ochoa & Storey, 2019). However, we will proceed with Weir and Cockerham's estimator.

Now, equation (2) can be rearranged to solve for t (the phenotypic variance). This gives:

                                                                                                   (10)                                                                                                                   
Based on equation (10), one can solve for the expected gap, where environments are equal, which is done by setting  to 1. This gives the following:

                                                                                                   (11)                                                                                                                                                                                 
Using equation (1), with the total heritability instead of within groups heritability, (11) is simply:                                                              
                                                                                                                      (12)                                                                                                                            

Equation (12) can be related to the equation for expected differences given by Turkheimer (1991, eq. 6), where:
P1observed =  +    and   P2observed =  +                                     (13)                                                                                   

and P1  and P2 are the standardized observed phenotypic values for group 1 and group 2, respectively and and  are the standardized genetic and environmental values for the respective groups. 

When  (and thus  = 1), then:                                                                                                                                                                                                                                                                                                                                                                                  

  P1 – P2 = )

And so, in terms of standardized phenotypic (dp expected) and genetic (dg) differences:

dP expected  = * dg                                                                                                                (14)                                                                                                            

With formula (6), we can convert the standardized differences (dp and dg) into point-biserial correlations, yielding:

                                              (15)
                                                    
Squaring both sides, recaptures equation (12), since the genetic intraclass correlation (r) and the phenotypic intraclass correlation (t) are equivalent to the square of the point biserial correlation. From the above, it can also be seen that the  or the “genotypic gap” is equal to √  * dobserved, where the √  can be interpreted as the correlation between phenotype and genotype between groups, i.e.:

                                                                                                                                                            (16)                                                                                                                   

This is because we can rewrite equation (1) as:

                                                                                                                     (17)                                                                                                                                          

Taking the square root of both sides, gives: 
                                                    
                                   (18)    
                                               

And from equation (15), we see that the left hand is equal to 
     
Equation 1 and 2 can be rewritten to solve for , the between group environmentality. This is just 1- , thus: 

                                                                                               (19)                                                                                                                                                                                                                                   

To note, while,  and  sum to 1, the expected differences on account of genes and environment, when expressed in standard deviations, will not sum to the phenotypic gap. This is because standard deviations are a linear measurement, and do not express differences in variance units (Jensen, 1998). Rather, to add the effects, one has to take the square root of the sum of the squared differences. The formula is:

d phenotypic =                                                   (20)                                                 

For example, in a case where the phenotypic differences is 1 (t = .20), the within groups heritability is .50, and r = .20,  = .5 and . By equation (14), the effect owing to environment will be = .71 SD or 10.6066 IQ points. And the effect owing to genes will be the same; this is also the expected difference given by equation (9).  The phenotypic differencesis recovered with equation (19), as  = 15.
                                                   
From the above, it is obvious that  is not equal to the real-world percentage of the differences which, owing to genes, would remain when the environments were equalized. The inference makes the r2 interpretative fallacy (Hunter & Schmidt, 2004), which results because variance-explained does not represent a linear relation between x and y. Rather expected percentage genetic, in the ordinary sense, is given by:

Percentage genetic expected =      / dobserved                                                              (21)                                                                                                                                              

Example:

Using the Education SNP Fst values in Table 1, calculate the expected differences owing to genes for Africans and Europeans, assuming an within groups heritability of .5.

Table 1. Fst Values for the 10k MTAG eduSNPs by 1000 Genomes Population Pairs.
______________________________________________________________________________

	Population_1
	Population_2
	Edu_Fst
	
	Edu_Fit

	AFR
	EAS
	0.1402
	
	0.1470

	AFR
	EUR
	0.1090
	
	0.1153

	AFR
	SAS
	0.1018
	
	0.1125

	AFR
	AMR
	0.0984
	
	0.1160

	EAS
	EUR
	0.0964
	
	0.1030

	AMR
	EAS
	0.0714
	
	0.0899

	EAS
	SAS
	0.0626
	
	0.0741

	EUR
	SAS
	0.0342
	
	0.0451

	AMR
	SAS
	0.0296
	
	0.0528

	AMR
	EUR
	0.0226
	
	0.0412


_____________________________________________________________________________
Note: AFR = African, EAS = East Asian, SAS = South Asian, Eur = European, and AMR = admixed American (Mexican, Puerto Ricans, Colombian, and Peruvian) populations. 

For Africans (AFR) and European (EUR), the MTAG SNPS the Fst = .1090. By equation (7), r = 2(.1090) /(1+.1153) = .1955. Given a  = .5, then texpected from equation (9) is:

texpected  =    .5   *         =    .1083                                               
Given equations (3) and (4), this equals d =  0.70 or a 10.46 point difference on a metric with a standard deviation of 15. 
Using rc from equation (9), instead, r = 2(.1090/.70) /(1+.1153) = .2792. The texpected is:
texpected  =    .5   *         =    .1623                                               
This equal d = .88 or a 13.20 point difference. 
Since estimates of h2 and H2 may vary, and since there may be disagreement on how to correct Fst , one can provide a table for the different possibilities, given Fst = .1090. This is shown in Table 2. 
Table 2. BGH and Expected Variance and IQ point difference Given Different Values of r and H2.
______________________________________________________________________________
	H2
	Fst
	r
	t_observed
	BGH
	t_expected
	d_expected
	Expected IQ point difference
	Cohen's Interpretation

	0.20
	0.1090
	0.1955
	0.2000
	0.194
	0.0463
	0.4409
	6.61
	Medium

	0.35
	0.1090
	0.1955
	0.2000
	0.340
	0.0784
	0.5833
	8.75
	Medium

	0.50
	0.1090
	0.1955
	0.2000
	0.486
	0.1083
	0.6971
	10.46
	Medium

	0.65
	0.1090
	0.1955
	0.2000
	0.632
	0.1364
	0.7949
	11.92
	Large

	0.80
	0.1090
	0.1955
	0.2000
	0.778
	0.1628
	0.8818
	13.23
	Large

	
	
	
	
	
	
	
	
	

	H2
	Fst
	r_c
	t_observed
	BGH
	t_expected
	d_expected
	Expected IQ point difference
	Cohen's Interpretation

	0.20
	0.1090
	0.2792
	0.2000
	0.310
	0.0719
	0.5567
	8.35
	Medium

	0.35
	0.1090
	0.2792
	0.2000
	0.542
	0.1194
	0.7364
	11.05
	Medium

	0.50
	0.1090
	0.2792
	0.2000
	0.775
	0.1623
	0.8802
	13.20
	Medium

	0.65
	0.1090
	0.2792
	0.2000
	1.007
	0.2011
	1.0035
	15.05
	Large

	0.80
	0.1090
	0.2792
	0.2000
	1.240
	0.2366
	1.1133
	16.70
	Large


______________________________________________________________________________
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